Mannequin Sizing Guidelines

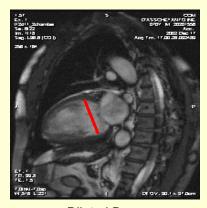
Selection of MannequinTM size is determined by multiplying body surface area by a conversion factor of 50 to 60 milliliters per square meter.* The degree of dilatation present in the *basal portion of the left ventricle* pre-operatively determines the conversion factor to be used.

The following guidelines may assist the clinical team in selecting the appropriate Mannequin size for each individual patient.

- 1 Determine Body Surface Area (BSA).
- 2 Assess the degree of dilatation present in the base of the left ventricle at end-diastole. Measure above papillary muscles and below mitral valve.
- 3 Use the following guidelines to calculate Mannequin size.

If the base of the left ventricle is	Use this conversion factor	
Non-dilated	BSA x 50 ml/m ²	
Moderately dilated	BSA x 55 ml/m ²	
Grossly dilated (tenting of mitral valve present)	BSA x 60 ml/m ²	

Note: If diameter of LV base at end-diastole is greater than 55 mm, use 60 ml/m² conversion factor.


Quick Reference Chart

	Mannequin size based on conversion factor of		
BSA	50 ml/m ²	55 ml/m ²	60 ml/m ²
1.5	80 cc	80 cc	90 cc
1.6	80 cc	90 cc	100 cc
1.7	85 cc	90 cc	100 cc
1.8	90 cc	100 cc	110 cc
1.9	90 cc	100 cc	110 cc
2.0	100 cc	110 cc	120 cc
2.1	100 cc	120 cc	130 cc
2.2	110 cc	120 cc	130 cc
2.3	110 cc	130 cc	140 cc
2.4	120 cc	130 cc	140 cc
2.5	120 cc	140 cc	150 cc
2.6	130 cc	140 cc	150 cc

Assessing Basal Dilatation: Examples of Non-dilated and Dilated Base

Non-Dilated Base

Dilated Base

^{*} M Di Donato, A Frigiola, M Benhamouda, L Menicanti. Safety and Efficacy of Surgical Ventricular Restoration in Unstable Patients With Recent Anterior Myocardial Infarction. Circulation. 2004:110:II-169–II-173.